## Fourier Series and Fourier Transform

References http://www.math.psu.edu/wysocki/M412/Notes412_8.pdf https://zhuanlan.zhihu.com/p/19763358 https://www.math.psu.edu/tseng/class/Math251/Notes-PDE%20pt2.pdf http://www.oulu.fi/sites/default/files/content/files/series.pdf http://www.engr.uconn.edu/~lanbo/G377FFTYC.pdf Fourier Series Theorem (references: Second Order Linear Partial Differential Equations, 复数形式傅立叶变换的物理意义，相位究竟指的是什么？) $$\text{Suppose } f(x) \text{ is a periodic function with period } T \text{ and is an integrable function on } [0, T]. \\ \text{Then, the Fourier Series of } f(x) \text{ can be written as }$$ \begin{align} f(x) & = \frac{c_0}{2} + \sum_{n=1}^{\infty} c_ncos(n \cdot \frac{2\pi}{T} \cdot x + \varphi_n) \\ &= \frac{c_0}{2} + \sum_{n=1}^{\infty} c_ncos(\varphi _n)cos(n \cdot \frac{2\pi}{T} \cdot x)+ (-c_n)sin(\varphi _n)sin(n \cdot \frac{2\pi}{T} \cdot x) \\ &\text{( let } a_0 = c_0, \;a_n = c_ncos(\varphi _n) \text{ and } b_n = (-c_n)sin(\varphi _n) \;) \\ &= \frac{a_0}{2} + \sum_{n=1}^{\infty} a_ncos(n \cdot \frac{2\pi}{T} \cdot x)+ b_nsin(n \cdot \frac{2\pi}{T} \cdot x) \\ \\ \text{where } c_n &= \sqrt{a_n^2 + b_n^2} = \sqrt{c_n^2(cos^2(\varphi _n) + sin^2(\varphi _n))} = \sqrt{c_n^2} \;\; (Amplitude)\\ \varphi_n &= tan^{-1}(-\frac{b_n}{a_n}) \;\; (Phase)\\ a_0 &= \frac{1}{T}\int_{0}^{T}f(x)dx \\ a_n &= \frac{1}{T}\int_{0}^{T}f(x) \cdot cos(n \cdot \frac{2\pi}{T} \cdot x)dx \\ b_n &= \frac{1}{T}\int_{0}^{T}f(x) \cdot sin(n \cdot \frac{2\pi}{T} \cdot x)dx \end{align}